LWL-Interface RS232 1Kanal

RS232 1Kanal Data Line Powered DTE

1 Allgemeine Beschreibung

Dieses Gerät ist ein kompaktes Modem zur Übertragung von einem asynchronen RS232 Datenkanal im "Voll-Duplex " Betrieb.

Das Modem bezieht seine Versorgungsspannung aus den elektrischen Datenleitungen und kann ohne externes Netzteil direkt an einer RS232 Schnittstelle (z. B. COM-Port) betrieben werden. Je nach verwendetem Lichtwellenleiter können zwischen zwei Teilnehmern Übertragungsstrecken bis zu 1000m realisiert werden.

2 Anwendungen _

Aufgrund der hohen Datenübertragungsrate von max. 120 kBit/s, den max. Übertragungsdistanzen von 1000m zwischen 2 Teilnehmern und der Protokoll-Transparenz, findet das Modem eine Vielzahl von Anwendungsmöglichkeiten:

- Bestehende elektrische RS232 Verbindungen lassen sich über größere Distanzen störsicher erweitern.
- Störsichere Datenübertragung unter schwierigen Umgebungsbedingungen.
- Galvanische Trennung von Teilbereichen eines RS232-Bussystems.

3 Blockschaltbild

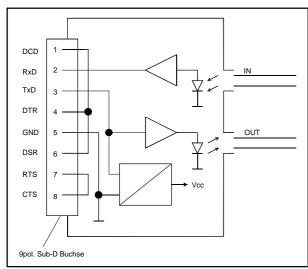


Bild 1



Bild 2

4 Eigenschaften

- 1Kanal RS232 LWL Transceiver
- Voll-Duplex Datenübertragung
- Unidirektionale RS232-Schnittstelle
- 120 kBit Datenübertragungsrate
- Voll Protokoll-Transparent
- -9-pol. Sub-D RS232 Schnittstelle Buchse
- F-SMA, F-ST oder andere genormte optische Anschlüsse
- Kunststoffgehäuse, metallisiert
- Spannungsversorgung aus den Signalleitungen

5 Bestellinformation _____

Ausführung

660 nm / F-SMA 660 nm / F-ST 850 nm / F-SMA 850 nm / F-ST

RS232 1Kanal Data Line Powered DTE

6 Optionen

Auf Anfrage ist das Modem optional in folgenden Ausführungen lieferbar:

- mit Rastelement für Montage auf 35mm Hutprofilschiene.
- mit invertiertem optisches Ausgangssignal (siehe 8 Arbeitsweise)
- für F-ST, F-SMA oder andere gängige opt. Steckverbinder.
- Kunststoffgehäuse grau, nicht metallisiert.

7 CE-Konformitätserklärung

Das RS232 1Kanal DLP Modem erfüllt die grundlegenden Anforderungen gemäß Artikel 4 und Anhang III der Richtlinie 89/336/EWG: Elektromagnetische Verträglichkeit (EMV). Die Übereinstimmung dieses Produkts mit den Vorschriften o.g. Richtlinie wird nachgewiesen durch die vollständige Einhaltung folgender Normen:

- EN 55022 bzw. EN 50081-1
- EN 55024 bzw. EN 50082-1
- EN 50082-2 (Industriebereich)

8 Arbeitsweise

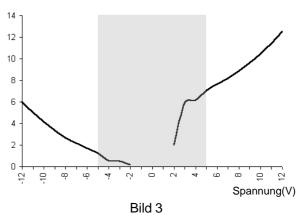
Das RS232 1Kanal LWL-Modem ist ein Codetransparenter elektro-optischer Wandler.
An der RS232-Schnittstelle ankommende Daten werden in optische Signale umgewandelt und vom angeschlossenen Lichtwellenleiter übertragen.
Der optische Empfänger generiert aus den ankommenden optischen Signalen das entsprechende RS232 Datenformat.

Das RS232-Format wird nach folgender Regel in optische Signale umgesetzt:

$$U_{_{\rm IN}} \ge +3V = '0' \implies \text{opt. Out=Ein}$$

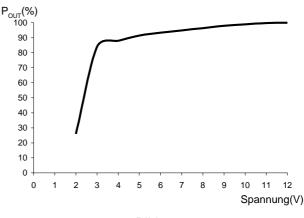
 $U_{_{\rm IN}} \le -3V = '1' \implies \text{opt. Out=Aus}$

Für Anwendungen bei denen die Zuordnung der optischen Pegel zu den Zuständen der RS232 Pegel invertiert sein muß, stehen entsprechende RS232 DLP-Modems zur Verfügung (Option).


9 Spannungsversorgung

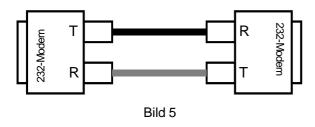
Das Modem bezieht seine gesamte Versorgungsspannung aus der TxD Datenleitung. Es wird kein externes Netzteil benötigt. Für die einwandfrei Funktion des Modem muß sichergestellt sein, daß die Leitungstreiber des Teilnehmers der EIA-RS232-C Norm entsprechen und der TxD Treiber des Teilnehmers in Sendepausen nicht abgeschaltet wird (High-Z Zustand).

01/00


In Bild 3 ist die Stromaufnahme des Modems in Abhängigkeit von der Treiberspannung auf der TxD Leitung dargestellt:

Strom(mA)

Innerhalb des markierten Bereiches ist die einwandfreie Funktion des Modem nicht gewährleistet, da die optische Sendeleistung und Empfindlichkeit abnimmt.


In Bild 4 ist die relative optische Ausgangsleistung (P_{OUT} rel) in Abhängigkeit der Treiberspannung auf TxD dargestellt.

RS232 1Kanal Data Line Powered DTE

10 Inbetriebnahme

- -Stellen Sie die Geräte an geeigneter Stelle auf.
- -Verbinden Sie die Geräte mit den Teilnehmern.
- -Stellen Sie sicher das alle zu verbindenden Geräte spannungslos sind. Dies vermeidet mögliche Schäden während der Verdrahtung.
- -Verbinden Sie mit dem konfektionierten LWL-Kabel die optischen Schnittstellen der Geräte nach dem Anschlußschema in Bild 5.
- -Prüfen Sie alle Verbindungen auf ihre richtige Anschlußbelegung.
- -Schließen Sie die Teinehmer an ihre Spannungsversorgung an.

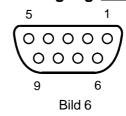
11 RS232

Die vollständige Pinbelegung der RS232 Schnittstelle und die Bedeutung der Signale sind in der EIA RS232-C Norm beschrieben.

Vereinbarungsgemäß gibt es Geräte die als DTE (Data Terminal Equipment z.B. Computer) und DCE (Data Communication Equipment z.B. Modem) bezeichnet werden.

In der Norm ist der 25pol. Sub-D festgelegt, wobei sich auch die 9pol. Sub-D Ausführung etabliert hat.

DCE = Sub-D Buchse DTE = Sub-D Stift


Beispiel 1: Pinbelegung 9pol. Sub-D

Pin	Name	DCE	DTE
1	DCD	Ausgang	Eingang
2	RxD	Ausgang	Eingang
3	TxD	Eingang	Ausgang
4	DTR	Eingang	Ausgang
5	GND	Masse	Masse
6	DSR	Ausgang	Eingang
7	RTS	Eingang	Ausgang
8	CTS	Ausgang	Eingang
9	RI	Ausgang	Eingang

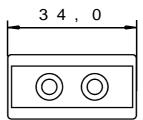
Beispiel 2: Pinbelegung 25pol. Sub-D

Pin	Name	DCE	DTE
1	CG	Erde	Erde
2	TxD	Eingang	Ausgang
3	RxD	Ausgang	Eingang
4	RTS	Eingang	Ausgang
5	CTS	Ausgang	Eingang
6	DSR	Ausgang	Eingang
7	GND	Masse	Masse
8	DCD	Ausgang	Eingang
12	DCD2	Ausgang	Eingang
13	CTS2	Ausgang	Eingang
14	TXD2	Eingang	Ausgang
15	TxC	Ausgang	Eingang
16	RxD2	Ausgang	Eingang
17	RxC	Ausgang	Eingang
19	RTS2	Eingang	Ausgang
20	DTR	Eingang	Ausgang
22	RI	Ausgang	Eingang
23	DRS	A/E	A/E
24	TxC	Eingang	Ausgang
25	BUSY	Ausgang	Eingang

10 Sub-D Pinbelegung

PIN Nr.	Name	Funktion
1	DCD	Brücke auf DTR,DSR
2 3	RxD TxD	Data OUT Data IN
4	DTR	Brücke auf DCD,DSR
5	GND	Bezugspotenzial
6	DSR	Brücke auf DCD,DTR
7	RTS	Brücke auf CTS
8	CTS	Brücke auf RTS
9	NC	nicht Verwendet

! Mit 'NC' bezeichnete Pins sind ohne Funktion und sollten nicht belegt werden. !


RS232 1Kanal Data Line Powered DTE

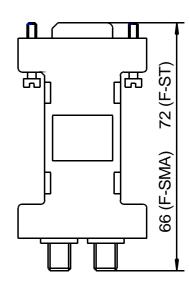
Betriebstemperatur _____ -10..+85°C

Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Modem dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Modems dar. Der dauerhafte Betrieb des Modems mit diesen Werten wird nicht Empfohlen, da die Zuverlässigkeit des Gerätes darunter leiden kann.

14 Maßzeichnung _____

13 Technische Daten

Datenrate: 0 .. 120 kBit/s Wellenlängen: 660nm, 850nm opt. Anschluß: F-ST, F-SMA


Reichweite: 300m min. GI-Faser 1000m typ. GI-Faser

60m min. PO-Faser 100m typ. PO-Faser

Datenformat el.: RS232-C/V24
el. Anschluß: 9-pol. Sub-D Buchse
Betriebsspannung: aus Datenleitung

Stromaufnahme: ca.10mA
Gehäuse: Kunststoff, metallisiert
Abmessungen: ca. 66x34x17 mm (L x B x H)

Schutzart: IP40
Gewicht: 30g
Temperaturbereich: 0 .. +80°C

